Effects of melatonin on cognitive impairment and hippocampal neuronal damage in a rat model of chronic cerebral hypoperfusion

نویسندگان

  • CHOONG HYUN LEE
  • JOON HA PARK
  • JI HYEON AHN
  • MOO-HO WON
چکیده

Chronic cerebral hypoperfusion (CCH), which induces oxidative stress and inflammation in the brain, has previously been associated with cognitive impairment and neuronal cell damage. Melatonin is a well-known free radical scavenger and antioxidant; therefore, the present study investigated the protective effects of melatonin against CCH-induced cognitive impairment and neuronal cell death in a CCH rat model, which was generated via permanent bilateral common carotid artery occlusion (2VO). The rats in the 2VO group exhibited markedly increased escape latencies in a Morris water maze test, as compared with the rats in the sham group. In addition, increased neuronal cell damage was detected in the hippocampal CA1 region of the 2VO rats, as compared with the rats in the sham group. Treatment of the 2VO rats with melatonin significantly reduced the escape latency and neuronal cell damage, and was associated with reduced levels of malondialdehyde, microglial activation, and tumor necrosis factor-α and interleukin-1β in the ischemic hippocampus. The results of the present study suggest that melatonin may attenuate CCH-induced cognitive impairment and hippocampal neuronal cell damage by decreasing oxidative stress, microglial activation and the production of pro-inflammatory cytokines in the ischemic hippocampus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuroprotective effect of berberine chloride on cognitive impairment and hippocampal damage in experimental model of vascular dementia

Objective(s):The major objective of the present study was to investigate the potential neuroprotective effect of berberine chloride on vascular dementia. Berberine, as an ancient medicine in China and India, is the main active component derived from the Berberis sp. Several studies have revealed the beneficial effects of berberine in various neurodegenerative disorders. Materials and Methods: T...

متن کامل

Effect of Centella asiatica on pathophysiology of mild chronic cerebral hypoperfusion in rats

Centella asiatica extract on cognition and hippocampal pathology of mild chronic cerebral hypoperfusion (CCH) that was induced by permanent right common carotid artery occlusion (RCO) in rats. Materials and Methods: Sixty-four male Sprague-Dawley rats were randomly divided into four groups of Sham-veh, Sham-C. asiatica, RCO-veh and RCO-C. asiatica, which were further divided into short-term and...

متن کامل

Effect of berberine chloride on caspase-3 dependent apoptosis and antioxidant capacity in the hippocampus of the chronic cerebral hypoperfusion rat model

Objective(s): The main goal of the current research was to examine the effects of Berberine (BBR) on apoptotic signaling and hippocampal oxidative stress induced by common carotid artery occlusion. Materials and Methods: Chronic cerebral hypoperfusion (CCH) model was created by occluding the two common carotid arteries (two-vessel occlusion [2VO]) permanently. BBR (50 and 100 mg/kg/daily) was i...

متن کامل

The Effect of Sodium Butyrate on Hippocampal Cell Damage and Apoptic Neurons Density in Cerebral Hypoxic-Ischemia Model

Introduction and aim: Histone deacetylase inhibitors (HDACi) have neuroprotective effects on amelioration of cerebral ischemic injuries. This study was investigated the effects of sodium butyrate (SB) as a HDACi hippocampal cell damage and neuronal/dark neuronal density in a rat cerebral hypoxic ischemia (HI) model. Materials and Methods: In this experimental study, 40 male Wistar rats (weight:...

متن کامل

Effect of Pentoxifylline on Ischemia- induced Brain Damage and Spatial Memory Impairment in Rat

Objective(s) The brief interruption of cerebral blood flow causes permanent brain damage and behavioral dysfunction. The hippocampus is highly vulnerable to ischemic insults, particularly the CA1 pyramidal cell layer. There is no effective pharmacological strategy for improving brain tissue damage induced by cerebral ischemia. Previous studies reported that pentoxifylline (PTX) has a neuroprot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016